2.1.	Program Curriculum
2.1.1.	State the Process Used to Identify Extent of Compliance of the University Curriculum for Attaining the Program Outcomes and Program Specific Outcomes
2.1.2.	State the Delivery Details of the Content beyond the Syllabus for the Attainment of POs and PSOs
2.2.	Teaching - Learning Processes
2.2.1.	Describe Processes Followed to Improve Quality of Teaching and Learning
2.2.2.	Quality of Internal Semester Question Papers, Assignments and Evaluation
2.2.3.	Quality of Student Projects
2.2.4.	Initiatives Related to Industry Interaction
2.2.5.	Initiatives related to industry internship training

2. Programme Curriculum

2.1.1 State the process used to identify extent of compliance of the University curriculum for attaining the Program Outcomes and Program Specific outcomes as mentioned in Annexure I. Also mention the identified curricular gaps, if any (10)

The Visvesvaraya Technological University (VTU), to which our college is affiliated, is endeavoring itself to come up with curriculum which is in tune with National Education Policy (NEP-2020). The VTU upgrades its curriculum almost every year to make sure that students at the university get quality education across all affiliated colleges. In view of this, the VTU has streams to cover broad spectrum of courses, ranging from Humanities, Kannada language, Constitution of India, Universal Human Values (UHVs), to basic Sciences, professional and integrated core courses, ability enhancement courses to professional and open electives to internship, mini-projects, and final year projects. Since the university is appending the curriculum regularly, there are three schemes, namely 2018 scheme, 2021 scheme and 2022 scheme are in vogue. Also, the university has mentioned the course outcomes (COs) and Program Outcomes (POs – only for 2022 scheme as indicative).

The process to identify the extent of compliance is depicted in Figure 2.1.1.A.

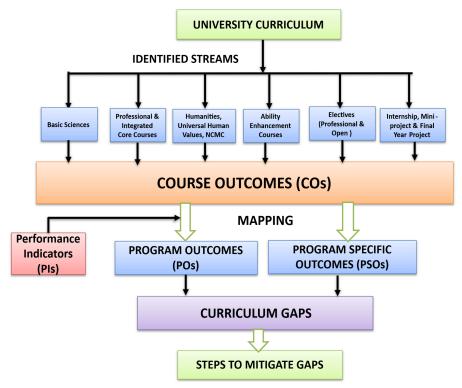


Fig. 2.1.1.A: Process used to identify the extent of compliance.

Program Curriculum:

Basic and Engineering Science Courses:

The stream forms the fundamental basis for all engineering disciplines which provides the basic knowledge on Mathematics, Physics, and Chemistry. Topics for these streams are chosen depending on their requirement to supplement the core courses of engineering. To meet this requirement engineering mathematics, engineering physics and engineering chemistry are included in the curriculum. also includes Engineering science courses such as, elements of civil engineering, introduction to civil engineering, basic electrical engineering, engineering graphics, C programming for problem solving, elements of mechanical engineering etc.

Professional and Integrated Core Courses:

The stream includes core courses relevant to the specific program of study and are meant to develop competencies required, so that the students acquire outcomes as desired by the profession. The Professional core course includes subjects like Transformer and Generator, Electrical Machines Laboratory-I, Electric motor, Electrical Machines Laboratory-II, Transmission and Distribution, Power System Analysis-1, Power Electronics, Power Electronics Laboratory, Signals & Digital Signal Processing, Digital Signal Processing laboratory, High Voltage and Power System Protection, Power system operation and Control. The Integrated Core Courses includes Analog Electronics Circuits & Op-Amps, Electric Circuit Analysis, Digital System Design, Microcontroller, Control Systems, Power System Analysis-2.

Humanities, Universal Human Values and NCMCs:

The stream includes courses in general studies to fulfill the basic needs of engineers. These are essential to create awareness on Indian constitution, Professional ethics, Importance of environment, Managerial and Entrepreneurial skills. To complement the components, the courses on Constitution of India, Professional ethics and Cyber Law, Technical English 1 & 2, Balake Kannada, Samskrutika Kannada, and Environmental studies, Social Connect and Responsibility, Universal Human Values are included in the curriculum. Curriculum Also includes non-credit Mandatory Course like Additional Mathematics I and II, Yoga, Nation Service Scheme, Physical Education etc.

Ability Enhancement Courses:

Need to update

Professional and Open Elective:

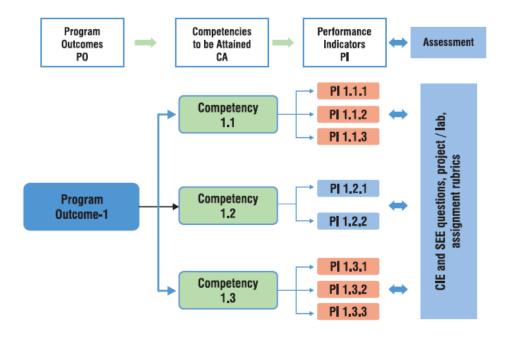
Need to update

Internship, Mini-Project and Final Year Project:

Students undergo 3-4 weeks of Internship after every academic Year. Students are motivated to do mini project during their second year. Also, curriculum includes mini project for the pre-final year students that is during 3rd year. Project work and technical seminars are included in the final year to provide opportunity for students to develop understanding of the inter relationship between courses, develop & demonstrate higher order skills, and to apply the gained knowledge. Project work has been given due weightage.

Various streams in the program curriculum as per 2021 scheme are shown in table 2.1.1. A

Table need to be updated.


Syllabus for 2021 scheme for all the semesters is shown in Figures 2.1.1.C to 2.1.1.J.

Programme Outcomes (POs):

Electrical and Electronics Engineering Graduates will be able to:

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex electrical engineering problems.
- **PO2. Problem analysis:** Identify, formulate, review research literature, and analyze electrical engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3.** Design/development of solutions: Design solutions for complex electrical engineeringproblems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex electrical engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one"s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

CO-PO mapping using Performance Indicators:

CO-PSOs mapping:

While articulating the PSOs, the following process is adopted:

- 1. The first PSO specifies the professional and integrated core courses.
- 2. The second PSO centers around the professional core and open electives, and
- 3. The third PSO focuses on the general skills and competencies students acquire through the university prescribed courses and through the college-initiated activities.

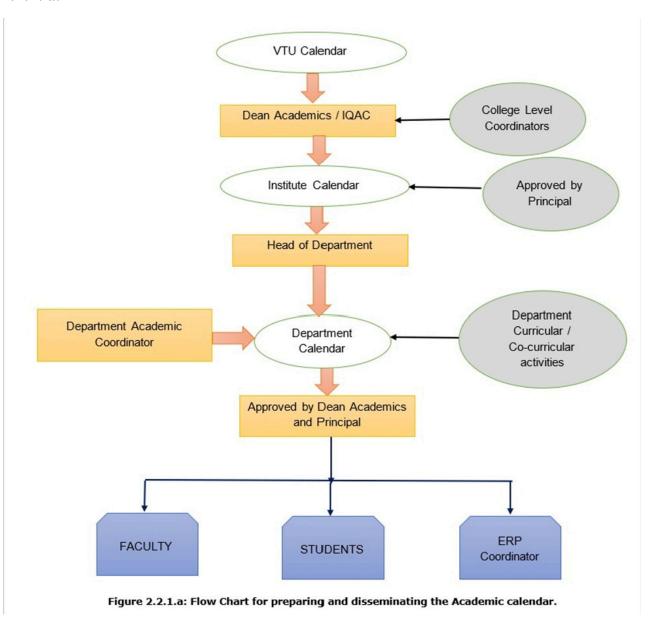
This process will galvanise an effective eco-system and nurture the quality of teaching-learning system. We, at AITM, have a tryst with quality, and to make the students learning an endearing and a surreal experience.

Program Specific Outcomes:

PSO1: To apply the principles of core Electrical and Electronics Engineering subjects such as Electrical Machines, Power Systems, Control Systems, and Power Electronics to analyze, design, and maintain efficient and reliable electrical systems.

PSO2: To blend knowledge of interdisciplinary and multidisciplinary domains, such as Electronics Engineering and Mechanical Engineering, with core domain for developing innovative and sustainable engineering solutions.

PSO3: To demonstrate ethical and professional behavior, effective communication, teamwork, and a commitment to lifelong learning and sustainable development while addressing societal and environmental challenges through engineering practices.


Program Educational Objectives (PEOs):

- **PEO1:** Apply the fundamentals of Mathematics, Science and Electrical Engineering concepts to analyse, formulate, and solve complex engineering problems in industries, research and academia.
- **PEO2:** Demonstrate the ability to analyze and understand the design needs of Electrical and Electronic systems, using hardware, software, and embedded technologies to develop practical and efficient engineering solutions.
- **PEO3:** Adapt to emerging technologies and collaborate effectively in multidisciplinary teams, enhancing communication skills and leadership abilities to tackle complex engineering challenges.
- PEO4: Encourage a successful professional career by adopting ethical work values and addressing societal needs.
- **PEO5:** Nurture lifelong learning and adaptability in engineering practices to meet the dynamic requirements of Indian and multinational industries, and to evolve as competent global professionals.

2.2.1. A. Adherence to Academic Calendar

Before the commencement of each semester, University notifies an academic calendar for all the programs, which contains the date of commencement, last workingday of the semester, Schedule for Internship and semester end examinations. The AITM follows the calendar issued by the University strictly and plans all itsactivities including the conduct of Continuous Internal Evaluation (CIE). The institute prepares an institute level calendar, and subsequently every departmentprepares its calendar. Institute calendar of events includes details like the total Number of working days and holidays, CIE Schedule, dates for the Institute's flagshipprograms. The department calendar comprises guest lectures, workshops, and industrial visits, other co-curricular and extracurricular activities. The academicactivities, CIE, and all activities are conducted in adherence to the calendar of events, except in unexpected circumstances. Also, the final departmental calendar of events is made available to faculty and students through ERP.

The process for preparing and disseminating the Academic Calendar is shown in Figure 2.2.1. a.

2.2.3. F. Evidences of papers published /Awards received by projects etc.

KSCST Awards:

Department of Electrical and Electronics Engineering Student's Project bagged the "**Best Project Award**" in 45th series of Student Project Programme (SPP): 2021-22 held at Visvesvaraya Technological University (VTU), Belagavi on 12th and 13th August 2022 by KSCST (Karnataka State Council of Science Technology, Bangalore).

Project/Paper Presentation Awards

- The Department of Electrical and Electronics Engineering, Angadi Institute of Technology and Management (AITM), Belagavi, proudly congratulates Sagar Rathod, Deepthi Chougale, Aditya Kulkarni and Mallu Arutagi for securing the First Prize at the National Level Project Presentation held at AGM, Varur, Hubli.
- Their award-winning project, titled "Solar-Biomass Hybrid Dryer for Rural Communities" impressed the jury with its innovation, practical application, and sustainable approach. Competing against top teams from premier institutions, Sagar R, Mallu, Aditya and Deepthi C stood out for their creativity, technical knowledge, and impactful solution to real-world

• challenges.

• State Level Technical Project Competition

Students of 6th Sem securing the **2nd Prize** in the **State Level Project Presentation** held at **ATME College of Engineering, Mysuru**, organized in association with the **Institution of Engineers (India)** and **IEEE ATME Students Branch (STB35744)**.

Department of Electrical and Electronics Engineering

Ref. No./ATME/EEE/AY 2024-25/EVEN/58

21st May 2025

Results of State Level Technical Project Competition

The Department of Electrical & Electronics Engineering and organized State Level Technical Project Competition "Avagamah - 2025" in association with The Institution of Engineers (INDIA), IEEE ATME Student Branch (STB 35744) on 21" May 2025 for Final and Pre-Final year students of Engineering institutions, the results of the event are as follows:

Category: ON Campus Participation.

Sl. No.	TEAM ID	Title of the Project	Institute	Team Lead	Award
1	117	Plug In Series Hybrid Electric Vehicle	SJCE, JSSSTU, Mysuru	Sai Harsha - 02JST22UEE410	1# Place
2	P24	Fire Extinguisher Drone	MIT Thandavapura	Gourav.S 4MN22EC013	· 2 nd Place
3	P13	Anacrobic Digestion of Canteen Waste for Biogas Production	ATMECE, Mysuru	Sumanth Naika M S 4AD22EE422	3 rd Place
4	Dadiant Warmer and Class Annea		ATMECE, Mysuru	Mohammed Harmain. 4AD21EE012	Consolation Prize
5	P2	STHREE Women Hygiene Hub	VVIET, Mysuru	Ms Akshitha Y P 4VM21EE003	Consolation, Prize

Category: Online Participation

Sl. No.	TEAM ID	Title of the Topic	Institute	Team Lead	Award
1	01	IoT Based Solar Power Energy Meter	DBIT, Bengaluru	Chethan B S 1DB23EE406	1st Place
2	O25	Shaping a Sustainable Path: Carbon Capture and Utilization (CCÜ) Technology	BITM, Bellary	A NANDINI 3BR22EE001	1st Place
3	016	Design and Development of a Pyramid Solar Still Using Phase Change Material as Storage Medium	AITM, Belagavi	Preeti Binjawadagi 2AG22EE012	2nd Place
4	O4	Solar Mobile Charger	Sri Sairam College of Engineering, Bengaluru	Tilak Pateel K C- 1SB22EE026	2nd Place
5	06	Renewable Energy Based on Home Automation System.	Sri Sairam College of Engineering, Bengaluru	Chandan R- ISB22EE004	Consolation Prize
6	015	Development of Deep Learning Based Self Examination of Breast Cancer	GMIT, Mandya	Kavyashree H N- 4MG21EE017	Consolation Prize
7	022	Real Time Vehicle Headlight Intensity Control for Enhanced Road Safety	BITM, Bellary	Shivakumar G- 3BR21EE086	Consolation Prize

The eash prize to the Winners (1st, 2ad & 3rd Place) will be NEFT to Team Lead.

Organizing Chairman

Dr. Parthasarathy L
Dr. PARTHASARATHY L.
Professor and HOD

Dant. of Electrical & Electronics Engineering

ATME COLLEGE OF ENGINEERINGTME College of Engineering, Mysuru 13th Kilometer, Mysore-Kanakapura-Bangalore Road, Mysore – 570 028 P: 0821-2593335 F: 0821-2593328

Email: info@atme in, Web : www.atme.in

National Level Project Competition

Students of 6th Semester, Department of Electrical and Electronics Engineering, have won the Best Project Award at the National Level Project Competition held at AITM, Belagavi.

Their innovative project and outstanding presentation skills stood out among participants from various institutions across the country. This remarkable achievement reflects their hard work, dedication, and the quality of education imparted at our institution.

Paper Publication

SI.NO	Name of t	he	Title	Name	of	the	Journal	Year	of	Impac
	Students			Guide				Publication	١,	t
								Volume	and	Factor
								Issue		

1	Sandesh Mantri Aman Wakilkar Shivabasayya Mathad Deepthi Kurbet	Recycling Plastic Bottles into Sustainable 3D Printing Filament and Electrical Insulator Material	Prof.Vinay Pattanshetti	IRJMETS	2025/Volume:0 7/Issue:05	8.187
2	Mallu Arutagi Sagarrathod Deepti Chougla Aditya Kulkarni	Solar Biomass Hybrid Dryer for Farmers and Rural Community	Prof.Kantesh D C	IRJMETS	2025/Volume:0 7/Issue:05	8.187
3	Sunita Shidagoudar Spoorthi Tattimani Saiyad Nijamuddin Basavaraj Annigeri	Design and Developme nt of Walkin Type Hemi Cylindrical Solar Tunnel Dryer for Industrial Use	Prof.Vinaychand rika Kale	IRJMETS	2025/Volume:0 7/Issue:05	8.187
4	Sriram Deshpande Shridhar Dhaduti Rahul Meeshi Daneshwari Jambagi	Design and Developme nt of Pyramid Solar Still Using Phase Changing material	Prof.Rajendra Ghivari	IJSRET	2025/Volume:1 1/Issue:3	3.241

e-ISSN: 2582-5208

International Research Journal of Modernization in Engineering Technology and Science

(Peer-Reviewed, Open Access, Fully Refereed International Journal)

Volume:07/Issue:05/May-2025

Impact Factor- 8.187

www.irjmets.com

RECYCLING PLASTIC BOTTLES INTO SUSTAINABLE 3D PRINTING FILAMENT AND ELECTRICAL INSULATOR MATERIAL

Sandesh Mantri*1, Aman Wakilkar*2, Shivabasayya Mathad*3, Deepthi Kurbet*4, Vinay Pattanshetti*5

*1.23A.5Angadi Institute Of Technology And Management Electrical & Electronics Engg, Visvesvaraya Technological University Savagaon Road, Belagavi, India.

DOI: https://www.doi.org/10.56726/IRJMETS77720

ABSTRACT

Plastic waste has become a critical environmental concern due to its non-biodegradable nature and increasing accumulation. This study presents the design and fabrication of a compact, low-cost plastic recycling machine aimed at addressing plastic pollution through small-scale, localized recycling. A review of literature highlights mechanical recycling as a widely adopted, cost-effective method, with initiatives like Precious Plastic demonstrating practical community-level solutions. The main objectives were to design an efficient recycling machine, fabricate it using locally available materials, and evaluate its performance in processing common plastic types such as LDPE and PET. The methodology included CAD-based design, fabrication of a shredder, extruder, and mold, followed by testing the machine's capacity, energy use, and quality of output. Results showed that the machine could shred and extrude up to 5 kg of plastic per hour, with consistent operating temperatures between 180°C and 220°C, producing uniform filaments and molded items. The project concluded that this machine provides an effective, affordable, and accessible means for small communities and institutions to manage plastic waste and support circular economy initiatives. Improvements in automation and safety features could further enhance its usability and efficiency.

Keywords: Electrical Insulator, Filament Extrusion LDPE (Low Density Polyethene), PET (Polyethylene Terephthalate) 3D Printing Filament.

I. INTRODUCTION

Recycling plastic bottles into sustainable 3D printing filament and electrical insulator material presents an innovative solution to two pressing global challenges: plastic pollution and the need for eco-friendly manufacturing resources. Plastic bottles, primarily composed of PET (Polyethylene terephthalate) and LDPE (Low density polyethene), are abundant waste materials that hold great potential for upcycling into valuable products. This project aims to transform discarded plastic bottles into high-quality 3D printing filament and functional electrical insulators. By leveraging accessible recycling and extrusion technologies, we can create materials suitable for diverse applications, including prototyping, low-voltage electrical components, and sustainable consumer products. Recycled PET, LDPE -based filaments offer strength, flexibility, and thermal stability, while also serving as effective electrical insulators due to their inherent dielectric properties. With appropriate processing and additive enhancements, these recycled materials can meet both mechanical and electrical performance standards.

II. METHODOLOGY

- o Collection & Sorting: Gather discarded PET and LDPE bottles; remove labels and contaminants.
- o Cleaning: Wash and dry plastics to eliminate dirt and moisture.
- o Shredding: Shred cleaned bottles into small, uniform flakes.
- Extrusion: Melt shredded plastics:
- o Melt the PET-LDPE mixture at 90-100°C using a heated screw system and specialized nozzles.
- Filament/Insulator Formation: Shape PET into filament; mold LDPE into low-voltage insulators.
- Quality Control: Sensors monitor filament diameter; automated adjustments ensure consistency.

KSCST Project Details

2023-2024

SL.NO	Project Title	Duration	Funding Agency	Amount
1	Step Solar Still	12	K-Tech NAIN	
		Months		
2	Design and fabrication of Box Type of	12	K-Tech NAIN	
	Solar Cooker	Months		
3	Design and Fabrication of Improvised	12	K-Tech NAIN	
	Parabolic Trough	Months		

2024-2025 (CAY)

SL.NO	Project Title	Duration	Funding Agency	Amount
1	RECYCLING PLASTIC BOTTLES INTO	6 months	KSCST	6500.00
	SUSTAINABLE 3D PRINTING FILAMENT			
	AND ELECTRICAL INSULATOR			
	MATERIAL			
2	DESIGN AND DEVELOPMENT OF A	6 months	KSCST	5500.00
	PYRAMID SOLAR STILL USING PHASE			
	CHANGE MATERIAL AS STORAGE			
	MEDIUM			
3	SOLAR BIOMASS HYBRID DRYER FOR	6 months	KSCST	6000.00
	FARMERS AND RURAL COMMUNITY			
4	IMPROVED BIOMASS COOK STOVE	6 months	KSCST	5000.00
	FOR RURAL AND MOUNTAINOUS			

2023-2024 (CAYm1)

SL.NO	Project Title	Duration	Funding Agency	Amount
1	M SHAPE LOW-COST SOLAR STILL FOR RURAL AND ISOLATED COMMUNITIES	6 months	KSCST	4000.00
2	HARNESSING WIND ENERGY FROM VERTICAL AND HORIZONTAL AXIS WIND TURBINE	6 months	KSCST	4500.00

2022-2023(CAYm2)

SL.NO Project Title	Duration	Funding Agency	Amount	
---------------------	----------	----------------	--------	--

1	DUAL OPERATING PARABOLIC	6 months	KSCST	6500.00
	TROUGH RECEIVER FOR FOOD			
	COOKING AND HOT WATER			
	GENERATION FOR RURAL AREAS			
2	DESIGN AND FABRICATION OF STEP	6 months	KSCST	5000.00
	SOLAR OVEN USING			
	SENSIBLE HEAT AS STORAGE MEDIUM			
	FOR REFUGEE CAMPS			

2021-2022 (CAYm3)

SL.NO	Project Title	Duration	Funding Agency	Amount
1	STEP SOLOR STILL: DESIGN	6 months	KSCST	6000.00
	MODIFICATION IN SOLAR STILL AND			
	INCORPORATION OF PHASE			
	CHANGING MATERIAL TO INCREASE			
	THE EFFICIENCY OF STEP SOLAR STILL			
2	WIRELESS CHARGING LANE FOR	6 months	KSCST	7000.00
	ELECTRIC VEHICLE			

2.2.4 Initiative related to industry interaction

2.2.4.A Industry Supported Laboratories

The industry supported laboratories develops best learning process using a comprehensive understanding of industry's best practices for both students and faculties. This initiative imbibes professionalism, behaviour aspects and awareness about industry expectations and also aligns aspirations of the students with the needs of the industries and promotes career counselling by organizing guidance lectures by senior corporate personnel.

The details of the industry supported laboratories are as shown in Table 2.2.4.A. And the corresponding MoU is shown in Figure 2.2.4.A

SI.NO	Lab	Industry	Objective	Lab Components Provided
1	Tequed Labs (AI, IoT and Robotics Lab)	R & D innovation hub focussed on providing quality education on latest and cutting-edge technologies to students and specialized in software hardware development along with placement training.	To set up a lab for AI, IoT and Robotics and deliver orientation programs, guest lectures, conduct hackathons, project expo and promote entrepreneurship.	-3D Printer with filaments - IoT Kits -Robotics Kits -AI Development Boards -Amazon Alexa -Virtual reality Head sets -Voice Recoginsation Kits -AWS Cloud Credits -Battery Packs

MEMORANDUM OF UNDERSTANDING

This Memorandum of Understanding ("MoU") is made on July 21st 2020, by and between:

Angadi Institute of Technology & Management

and

TEQUED LABS PVT LTD

Angadi Institute of Technology & Management, an entity incorporated under the laws of India represented by its Principal. (Here in after referred as "AITM").

AND

TEQUED LABS PRIVATE LIMITED -having its Registered Office No 10, BSK 3rd Stage, Bangalore, Karnataka, India, 560085 (hereinafter referred to as "TEQUED ·LABS"):

AITM and TEQUED LABS shall hereinafter be collectively referred to as "Parties" and individually as "Party"

WHEREAS

- A. AITM is specialized in providing value-added, holistic engineering education to students at affordable costs, in conducive academic ambience, leading to Personality development and intellectual growth.
- B. TEQUED LABS is an R&D Innovation Hub and educational institute which is focused on providing quality education on latest and cutting-edge technologies to students and also specializing in software/ hardware Development along with Placement Training. The goal of the company is to promote innovation, entrepreneurship and also increasing employability quotient thus making them Job- Ready.
- C. The Parties wish to co-operate with each other as per the terms and conditions enumerated in this MoU.

TEQUED LABS PVT. LTD. No. 10, Anjaneya Nagar, BSK 3rd Stage, BANGALORE - 560 225.

Alitya SK

Lab Setup

Tequed Labs will invest an amount of 2-3 Lakhs and set up Innovation Center / Centre of Excellence. Following set of components shall be provided

- 1. 3D printer with filament
- 2. IoT Kits (Boards, Sensors, Connectors, Wires etc)
- 3. Robotics Kits (5 Nos)
- 4. Artificial Intelligence Development Boards
- 5. Amazon ALEXA
- 6. Virtual Reality Headsets -10
- 7. Voice Recognition Kits
- 8. AWS Cloud Credits
- 9. Battery Packs for Electric Vehicle development

Paid Workshops / Events

Tequed labs will charge a nominal fee for all the workshops and Skill Development Programs which will be conducted for all students from different branches in the college under the COE.

TEQUED LABS PVT. LTD. No. 10, Anjaneya Nagar, BSK 3rd Stage,

BANGALORE - 560 085.

IN WITNESS THEREOF, each of AITM and TEQUED LABS - having its Registered Office No 10, BSK 3rd Stage, Bangalore, Karnataka, India, 560085 has caused this MoU to be signed and delivered by its duly authorized representative.

Dr. Anand Deshpande

Principal AITM

Belgaum

Mr. Supreeth Y S Director and CEO TEQUED LABS

Bangalore

Prof. Vishalkirthi S. Patil

Placement Officer

Electronics & Communication

Faculty Co-ordinator

AITM Belgaum fditya.S.K

Mr. Aditya S K Director and CTO TEQUED LABS

Bangalore

TEQUED LABS PVT. LTD. No. 10, Anjaneya Nagar, BSK 3rd Stage, BANGALORE - 560 305.

Date: 21/07/2020

Date:

Utilization of Tequed Labs

MOU with HESCOM

INDIA NON JUDICIAL

Government of Karnataka

Certificate No.

Certificate Issued Date

Account Reference

Unique Doc. Reference

Purchased by Description of Document

Description

Consideration Price (Rs.)

First Party Second Party

Stamp Duty Paid By

Stamp Duty Amount(Rs.)

: IN-KA44172811855872V

: 09-Jan-2023 12:07 PM

NONACC (FI)/ kaksfcl08/ NAVANAGAR1/ KA-DW

: SUBIN-KAKAKSFCL0883871595811846V

: HESCOM HUBBALLI

: Article 12 Bond

MOU

(Zero)

: HESCOM HUBBALLI

: AITM BELAGAVI : HESCOM HUBBALLI

(One Hundred only)

Please write or type below this line

MEMORANDUM OF UNDERSTANDING

THIS MEMORANDUM OF UNDERSTANDING ('MOU') is made at Hubli Electricity Supply Company Limited, Hubballi, Karnataka, India on this 09th day of January 2023 by and between:

Principal & Director Suresh Angadi Education Foundation Angadi Institute of Technology And Management

Savagaon Road, Belagavi-590 009

Statutory Alert:

1. The authenticity of this Stamp certificate should be verified at 'www sholls Any discrepancy in the details on this Certificate and as available on the v. 2. The onus of checking the legitimacy is on the users of the certificate.

General Manager (Admin & HRD) HESCOM., Hubball.

Contd... Pg. 1/6

2.2.5 Initiative related to industry internship/summer training

2.2.5.A Industrial visits are a vital component of engineering education that significantly contribute to the holistic development of students. These visits bridge the gap between theoretical knowledge and practical applications by exposing students to real-time industrial practices and emerging technologies. They offer first-hand insight into how engineering concepts are applied in the industry, thereby enhancing students' understanding and motivation. The Table 2.2.5.A. shows the industrial visits by students.

2024-2025

SI.No	Type of Industry	Planned or Non Planned Activity	No.of Students Participated	Domain	Year
1	Varahi Underground Power Plant, Udupi	Non Planned Activity	42	Power and Energy	2024
2	Wind Energy	Non Planned Activity	33	Power and Energy	2024
3	220 kV Switching Station	Non Planned Activity	33	Electrical Power Systems Engineering	2024

2022-2023

SI.No	Type of Industry	Planned or Non Planned Activity	No.of Students Participated	Domain	Year
1	Supa Power House	Non Planned Activity	57	Power and Energy	2022
2	Sharavathi Hydro Power Plant	Non Planned Activity	30	Power and Energy	2022

